An Efficient Keyword Spotting Techni Language for Filler Mo

نویسنده

  • Panikos Heracleous
چکیده

The task of keyword spotting is to detect a set of keywords in the input continuous speech. In a keyword spotter, not only the keywords, but also the non-keyword intervals must be modeled. For this purpose, filler (or garbage) models are used. To date, most of the keyword spotters have been based on hidden Markov models (HMM). More specifically, a set of HMM is used as garbage models. In this paper, a two-pass keyword spotting technique based on bilingual hidden Markov models is presented. In the first pass, our technique uses phonemic garbage models to represent the nonkeyword intervals, and in the second stage the putative hits are verified using normalized scores. The main difference from similar approaches lies in the way the non-keyword intervals are modeled. In this work, the target language is Japanese, and English was chosen as the ‘garbage’ language for training the phonemic garbage models. Experimental results on both clean and noisy telephone speech data showed higher performance compared with using a common set of acoustic models. Moreover, parameter tuning (e.g. word insertion penalty tuning) does not have a serious effect on the performance. For a vocabulary of 100 keywords and using clean telephone speech test data we achieved a 92.04% recognition rate with only a 7.96% false alarm rate, and without word insertion penalty tuning. Using noisy telephone speech test data we achieved a 87.29% recognition rate with only a 12.71% false alarm rate.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Spanish Keyword Spotting System Based on Filler Models, Pseudo N-gram Language Model and a Confidence Measure

In order to organize efficiently lots of hours of audio contents such as meetings, radio news, search for spoken keywords is essential. An approach uses filler models to account for non-keyword intervals. Another approach uses a large vocabulary continuous speech recognition system (LVCSR) which retrieves a word string and then search for the keywords in this string. This approach yields high p...

متن کامل

Keyword spotting for highly inflectional languages

This paper presents our new keyword spotting system taking advantage of both the filler model and the confidence measure approaches. The novelty is in a non-standard connection of the filler and the keyword models together with introduction of a new confidence measure based on a keyword normalized score. In detail the paper deals with a decision block. Two methods are introduced. The first is b...

متن کامل

Using phonological phrase segmentation to improve automatic keyword spotting for the highly agglutinating Hungarian language

This paper investigates the usage of prosody for the improvement of keyword spotting, focusing on the highly agglutinating Hungarian language, where keyword spotting cannot be effectively performed using LVCSR, as such systems are either unavailable or hard to operate due to high OOV rates and poor Ngram language modelling capabilities. Therefore, the applied keyword spotting system is based on...

متن کامل

An Experimental Evaluation of Keyword-Filler Hidden Markov Models

We present the results of a small study involving the use of keyword-filler hidden Markov models (HMM) for spotting keywords in continuous speech. The performance dependence on the amount of keyword training data and the choice of model parameters is documented. Also, we demonstrate a strong correlation between individual keyword spotting performance and median duration of that keyword. This de...

متن کامل

Lexical Access-based Confidence Measure for a Spanish Keyword Spotting System

Keyword spotting deals with the search of a reduced set of keywords in audio content. Phone Lattice-based approaches are very fast but achieve poor results. HMM-based keyword spotting systems deal with filler models to absorb the Out-of-vocabulary (OOV) words and achieve best results although they are slower. We propose a technique which combines them in order to perform a confidence measure to...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2003